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Abstract

The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on

tetragonal lysozyme solubility. While keeping the NaCI concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at

4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a

function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0. I M. This

decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M

resulted in an increase in the lysozyme solubility, which reached a peak at ~ 0.3M acetate concentration. This increase was

believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation

by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in

crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentra-

tion beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCI concentrations.

I. Introduction

The tetragonal form of chicken egg white

lysozyme has become the de facto standard protein

for crystal growth studies. A large body of data on

the crystal growth rate, nucleation rate and solubility

(for example, see Refs. [1-5], meeting proceedings)

exists because of the ease and reproducibility of

working with this protein. Consequently, the crystal

nucleation and growth behavior of this protein is

better characterized than that of any other. For exam-

ple, the growth rate at a given supersaturation varies

with pH, temperature and salt concentration [6-8],

* Corresponding author.

which is believed to be due to the complex behavior

of this protein in solution [6,9].

A knowledge of the phase behavior is fundamen-

tal to studies of the crystal growth process. The

saturation concentration of a solute is the equilibrium

concentration that is attained in the presence of its

solid phase, and is dependent upon the nature of that

phase. Proteins are typically crystallized or precipi-

tated by the addition of a precipitating molecular

species, which may for example be a neutral salt, a

high molecular weight polymer such as PEG, or

small organic compounds such as methylpentanediol

[10]. Lysozyme crystallizations are typically from

neutral salts. Hofmeister [1 1] empirically determined

that different ions were more or less effective in

desolubilizing proteins, giving rise to what is now

called the Hofmeister or lyotropic series. Lysozyme

0022-0248/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
PII S002 2-0248(96)00368-5
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solubility has been shown to be predominately a

function of the anion species, whose order of prece-

dence is

SO_ >HPO_ >CHACO 2 >HCO_ >C1 >Br

>NO_ >1 >SCN

The arrangement of the ions in this series is from

less to more chaotropic, left to right. Hoflneister

determined that more chaotropic ions tended to solu-

bilize proteins, and that those to the left in the above

series were better precipitants than those to the right.

However, it has been shown that for lysozyme the

solubility is the reverse order of this series [12-14].

The anionic species not only deternfines the solubil-

ity of the protein at any given condition, but also the

crystal form obtained. Thus, more chaotropic anions

(NO_ to SCN ) give monoclinic crystals [12,13],

while ions to the left of NO_ give tetragonal crystals

at room temperature. Demonstrably, then, lysozyme

solubility and phase behavior are also a function of

their surrounding environmental composition.

Most lysozyme crystal growth and solubility stud-

ies have been in sodium acetate buffer, between pH

4.0 to 5.4. One major impediment of the direct

comparison to other data has been the variety of

conditions studied. Extensive solubility data is now

available as a function of both pH and temperature

for tctragonal lysozyme in 0.1M acetate buffer

[ 15, 16]. However. many researchers have worked at

other buffer concentrations or not used buffers at all.

One heretofore overlooked variable has been the

effects of the buffer concentration on the cwstal

growth process. Perhaps this is because typical buffer

concentrations are relatively low compared to the

precipitant concentration. However, acetate is also

known to be a weak precipitant of lysozyme [12].

This work was initiated in an effort to understand the

effects of buffer concentration on the solubility of

lysozyme. Additionally, it also gives some insight

into how lysozyme is driven from solution by precip-

itating anions.

2. Materials and methods

Chicken egg white lysozyme (Sigma) was pre-

pared for solubility column packing essentially as

previously described [ 14, 17, 18]. The protein was dia-

lyzed against pH 4.0 sodium acetate (NaAc) buffer at

the appropriate buffer molar concentration (see be-

low), then against pH 4.0 acetate buffer plus 2_

(w/v) sodium chloride, at room temperature. The

crystals and some of the supernatant from this proce-

dure were set aside, and the remaining supernatant

divided among four dialysis bags. At this point.

crystalline suspensions were prepared by dialysis

against 3.0%, 4.0%, 5.0% and 7.09/ salt solutions at

the appropriate buffer concentration.

The crystals Dom the above dialysis procedures

provided material to pack the solubility columns.

Reservoir solutions were prepared from the super-

natant and dialyzate solutions. The tetragonal habit

of the crystals was verified by simple visual inspec-

tion. After the solubility columns were packed, sev-

eral milliliters of the appropriate reservoir solution

were passed through them to ensure equilibration.

All non-protein materials were reagent grade or

better. Acetate buffer solutions were prepared by

adding the appropriate amount of acetic acid to

~ 950 mL of dH20, then adding the proper amount

of sodium chloride, followed by adjusting the pH to

4.0 with saturated NaOH. The volumes were ad-

justed to 1.0 L after the pH titration procedure. All

pH measurements were determined at room tempera-

tare. Lysozyme concentrations, after dilution into

dH20, were determined using A(I%, 281.5 nm)=

26.4 [I 9].

The solubility apparatus was slightly modified

from that previously reported [14]. In this case, the

thermoelectric cooling plate was replaced by a stain-

less steel tube loop, with cooling provided by a

refrigerated cooling circulator. This eliminated prob-

lems encountered due to failure of the previously

used thermoelectric devices.

3. Results and discussion

Tetragonal lysozyme solubilities were collected at

0.0IM, 0.05M, 0.15M, 0.2M, 0.3M. 0.4M and 0.YM

sodium acetate buffer concentrations, and at 2.0%,

3.0%, 4.0_2;, 5.0_ and 7.0% NaCI for each buffer

concentration. Most solubility data were collected

over the range of 4-25°C, with several passes re-
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peated over this range in ~ 0.5 to 2.0 degree steps.

As with previous solubility data from this laboratory,
polynomial coefficients for best fits to each data set

are given in Table 1. Some data sets, indicated by a
*, were only collected from 9-25°C due to problems

with the cooling system, and the coefficients given

are only good over that range. The coefficients given

for the 0. I M buffer concentration are from Cacioppo

and Pusey [15]. Typically, > 50 data points were
used to determine the coefficients for each set of
conditions.

For any given buffer concentration, the overall

shape of the solubility versus temperature curves

were similar to those previously obtained at 0.1M

Table 1

Coefficients from solubility data fit to a third-order polynomial

Molarity % NaCI A B × 102 C X 10 _ D x 105 Average deviation %

0.01 *

0.01 *

0.01 *

0.01

0.01

0.05

0.05

0.05

0.05

0.05

0.10

0.10

0.10

0.10

0.10

0.15 *

0.15 *

0.15 *

0.15

0.15

0.20 "

0.20 *

0.20

0.20

0.20

0.30

0.30 *

0.30 "

0.30

0.30

0.40 "

0.40 *

0.40

0.40

0.40

0.50

0.50

0.50

0.50

0.50

2.0 22.33 - 248.3 160. l 78.95 8.0

3.0 - 1.274 74.25 - 31.63 131.4 6.3

4.0 2.810 - 37.17 46.8 - 96.44 7.7

5.0 - 4.304 104.5 - 56.35 I 18.0 9.6

7.0 - 0.6891 28.78 - 17.14 41.66 4.0

2.0 - 35.06 871.2 - 511.5 1274 5.7

3.0 - 0.9917 75.87 - 39.22 151.5 7.6

4.0 0.6162 30.64 - 20.24 79. I 1 7.2

5.0 - 2.385 67.66 - 36.16 77.84 4.4

7.0 - 0.2344 14.63 - 4.663 8.806 7.5

2.0 - 2.385 200.2 - 169.4 684.2 4.7

3.0 - 0.931 65.57 - 54.52 208.9 5.7

4.0 -0.2784 21.10 - 13.85 50.91 5.7

5.0 0.05134 7.642 - 5.852 30.75 3.9

7.0 0.1444 0.0291 I. 127 3.229 4.2

2.0 0.6501 215.3 - 177.8 835.4 10.0

3.0 - 1.957 108.4 -64.93 207.5 8.7

4.1 3.057 - 26.59 19.59 - 11.92 8.3

5.0 0.6938 6.345 - 0.9337 16.09 11.7

7.0 0.5419 2.094 - 1.069 9.346 10.2

2,0 - 20. I 0 590,1 - 374.8 983.0 9,9

3,0 19.43 - 292.6 171,2 - 234,0 10.1

4.0 1.258 13,88 - 4.697 37,88 1 1,4

5.0 1.159 7.772 - 7.160 35,77 12.3

7.0 1,952 - 2.182 0.9851 6.858 8.8

2.0 0,6074 166,2 - 113.3 515.0 8.5

3,0 5,966 - 64.25 43.82 14,14 8,3

4.0 2.969 - 34.37 28.42 - 33,60 9.8

5.0 1.110 - 4.964 6.573 - 2.684 8.8

7.0 1.462 - 4.880 5.914 - 7.468 7.9

2.0 16.16 - 246. I 198.4 - 245.1 8.7

3.0 3.391 - 42.12 42.32 - 33.37 9.4

4.0 0.6952 9.327 - 4.618 36.21 7.6

5.0 1.05 - 5.643 5.839 2.21 9.1

7.0 0.9537 4.024 - O.3597 7.198 10.0

2.0 6.280 - 6.032 14.28 115.0 8.6

3.0 0.7474 26.93 - 16.29 81.97 7.3

4.0 0.4695 I 1.27 - 5.348 31.92 6.7

5.0 0.6207 7.219 - 3.906 23.76 6.9

7.0 0.5780 3.818 - 1.571 8.982 9.7

Coefficients indicated by an are only valid over the range from 10 to 25°C. the rest from 4 to .5 C.

Using the following equation, A + BX + CX" + DX _, where X = °C, one can calculate the solubility. For example, at O, 1M NaAc, 3c/t

NaC1. 20°C the solubility is 7.14 mg/ml.
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Na.% conc [1_ ¢_t0 ' N_e cone. [gl

0.d

NaAe NaAe co_ 0.4 I0 *G

Q•,

Na&e cone I_

Fig. I. Surface plots of lysozyme solubility as a function of the

buffer concentration and temperature at fixed NaCI concentra-

tions. Note that the Z axes are all on different scales. (a) 2ch

NaC1, (b) 3% NaCI, (c)4% NaCt, (d) 5G NaCI, and (e) 7% NaCI.

acetate concentration. The major differences were
observed when the solubility was plotted as a func-
tion of the buffer concentration and temperature.

These plots, for each NaCI concentration, are shown
in Fig. 1. The most obvious features, common to all

of these plots, were (1) a pronounced minimum in

solubility at ~ 0. IM buffer concentration, (2) steeply

decreasing solubilities with increasing buffer concen-
tration over the 0.01-0.1M concentration range (3)

increasing solubilities with buffer concentration

above 0.1M, and (4) a subsequent decrease in the

solubilities at buffer concentrations greater than ~
0.3M.

While the data in Fig. 1 indicates how the abso-

lute solubilities respond to changing buffer concen-

trations, they do not clearly show where the system

is most sensitive to these changes. This is shown in

Fig. 2, where for each salt concentration the solubili-
ties at 10°C and 20°C are normalized to those at

0.1M NaAc. These plots show that while the abso-

lute changes in solubilities may be slight at higher

NaCl concentrations, the percentage changes are

considerably larger than at lower NaC1 concentra-
tions.

We had previously suggested that the large solu-

bility differences noted between data collected by

this lab and that collected by other groups at a lower

buffer concentration was more likely due to differ-

ences in technique, or quality of the protein used

[15], than to any buffer effects. From the results in

Fig. 2, this assessment was obviously not correct.
Depending upon the temperature and salt concentra-

tion, solubilities at 0.05M NaAc ranged from ~

1.5-5 times greater than those at O. IM NaAc. How-

ever, these rates of change were greater than those

found for lysozyme at low NaC1 concentrations.
Over the 4-25°C range (0.1M NaAc, pH 4.0),

lysozyme solubilities at 0.34M NaCI (2%) go from
~ 2.1 × (4°C) to 2.77 × (25°C) those at 0.43M

NaCI (2.5%) (unpublished data). From Fig. 2, we see

that a 0.05M change in the buffer concentration.

whether decreasing from 0.1M to O.05M or increas-

ing from O. IM to 0.15M, results in 1.5 to ~ 6.5 fold
changes in the solubility. On a per mole basis, at low

..O

O

z

x--

O

e'-

.g"
e_
..,=

"6
{/)

"6
"E
(D
o
8.

300 ' I ' _; I ' I ' I

100 -

700

. ' [I;lx' I ' I ' I

500 -.. !

300 :

100
' ' I '1 ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5

acetate buffer conc., [M]

Fig. 2. The relative effects of the buffer concentration on solubil-

ity, as a percentage of the solubility at 0.1M NaAc. Legend: 2¢/_

NaCI (_), 3% NaCI (+). 4% NaCI (z_). 5e/_ NaCI (O). and 7c_

NaCI ( [] ).
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buffer concentrations, lysozyme is more sensitive to
the NaAc concentration than to NaCI. More interest-

ing from a crystal growth standpoint is that this

relative sensitivity increases with increasing NaCI
concentrations. Slight changes in the buffer concen-

tration can affect the solubility (and thus the super-
saturation level), and these effects are more dramatic

the higher the salt concentration.

From its position on the lyotropic series and based
upon previous solubility data [12], acetate is a less

effective precipitant for lysozyme than chloride. Be-

cause of this, it is unlikely that the effects at concen-
trations < 0.1M are due to the direct desolubiliza-

tion of lysozyme by the acetate ion. Ries-Kautt and

Ducruix [12] have found that lysozyme solubility in

ammonium acetate is ~ 10-12 times greater than in
sodium chloride. However, their data also shows an

~ 3 fold increase in solubility between sodium and

ammonium chlorides. We may reasonably assume
then that solubilities in sodium acetate should be

~ 3-4 times those for sodium chloride. Ion binding

studies in solution and in the crystal (work in

progress) suggest that there are a minimum number

of sites on the protein surface which have to be

occupied by counter ions for full solubility to be
reached. Occupation of sites beyond this level then

results in the progressive decrease in protein-solvent

affinity, and a concomitant increase in protein-pro-
tein interactions. While acetate is a less effective

precipitant, it may still bind equally or more tightly

to and preferentially occupy these minimally re-

quired "salting in" sites over chloride ion. The

displaced chlorides would then be free to bind to a

reduced number of remaining sites, thereby reducing

the solubility. This argument does not adequately

explain the proportionately greater sensitivity of the

solubility to the acetate concentration at lower pro-
tein concentrations, where one would expect that the

higher chloride concentrations would result in a re-
duction in the numbers of bound acetate.

The above argument makes the assumptions that

the chloride and acetate binding sites are all the same

and that selected sites are more important to others

in determining the proteins solubility. This remains
to be shown. Initially, our assumption had been that

chloride was bound primarily to the basic amino acid

side chains (lysine and arginine). Crystallographic
data have since shown that this is not the case (work

in progress). We can speculate that acetate ions may
also (weakly) interact with hydrophobic pockets by

means of the methyl group. Such an interaction

would both cover a hydrophobic region and replace
it with a charged, more hydrophilic group enhancing

the protein solution interactions (i.e., the acetate

would act as a weak detergent).

This speculation does not account for the rapid
decrease in solubility found when the acetate concen-
tration is increased from 0.001 to 0.1M. Also, it does

not explain the (apparently) hyper-sensitivity to ac-

etate over the 0.01M to 0.15M concentration range at

higher chloride concentrations. This high sensitivity

can translate into very large supersaturation swings

on the crystal face in the presence of any buffer

concentration gradients, and may be a heretofore
"'hidden" cause of variations in growth rate data and

growth cessation. Studies of the solubility of
lysozyme in acetate buffer (without other anions

present) and of acetate binding to lysozyme are now

under way and should help clarify this problem.

The increase in solubility above 0.1M acetate

suggests that there is competitive displacement of

chloride from sites on the protein by the buffer

anions. Again, from Fig. 2, it would appear that this
effect is proportionately greater the lower the protein
concentration (i.e., the higher the chloride concentra-

tion). The increases in solubility continue to ~ 0.2-

0.3M acetate, alter which the solubility again de-

creases. This final decrease is most likely due to the

concentrations of acetate becoming sufficiently high

to drive protein precipitation.

The interpretation, that the mechanism by which

acetate and chloride ions affect lysozyme solubility

through direct binding to the protein surface, runs
counter to the preferential interaction studies of

Timasheff [20]. Their data indicated that at high

concentrations (0.5-1.0M) both anions are strongly

excluded from, and that there is little binding to, the

protein. Extensive binding to the protein surface was

characteristic of destabilizing or salting-in effects.

However, kinetic and equilibrium binding data ([21],

and work in progress) show that the formation of"

protein-protein bonds, as would be occurring at high
precipitant concentrations, occurs by the breaking of

extensive protein-anion interactions, releasing those
anions back to the solution.

On the basis of the evidence at hand, we can only
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speculate about the interplay between chloride, ac-

etate and lysozyme which leads to the results pre-
sented above. Explanations for much of this behavior

are not evident. For example, observations not intro-

duced into the above is the apparent shift in the

solubility minimum at 2% NaCI, from 0.1M to 0.2M
acetate, between 10 and 25°C, or why the solubility

minimum should generally be so firmly "rooted" at
0.1M acetate. While determining the origins of the

buffer effects on solubility remains to be resolved,

one practical result is immediately apparent. Accu-
rate and reliable crystal growth data can only come
from a strict control over all relevant parameters,

which can only be accomplished by the careful

preparation of the material to be used. On the basis
of the above it is obvious that the buffer concentra-

tion is a major factor in determining the data ob-

tained, and should be controlled accordingly.
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